Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finiteness properties for relatives of braided Higman--Thompson groups

Published 24 Mar 2021 in math.GR, math.AT, and math.KT | (2103.14589v4)

Abstract: We study the finiteness properties of the braided Higman--Thompson group $bV_{d,r}(H)$ with labels in $H\leq B_d$, and $bF_{d,r}(H)$ and $bT_{d,r}(H)$ with labels in $H\leq PB_d$ where $B_d$ is the braid group with $d$ strings and $PB_d$ is its pure braid subgroup. We show that for all $d\geq 2$ and $r\geq 1$, the group $bV_{d,r}(H)$ (resp. $bT_{d,r}(H)$ or $bF_{d,r}(H)$) is of type $F_n$ if and only if $H$ is. Our result in particular confirms a recent conjecture of Aroca and Cumplido.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.