Conjectures on Hidden Onsager Algebra Symmetries in Interacting Quantum Lattice Models
Abstract: We conjecture the existence of hidden Onsager algebra symmetries in two interacting quantum integrable lattice models, i.e. spin-1/2 XXZ model and spin-1 Zamolodchikov-Fateev model at arbitrary root of unity values of the anisotropy. The conjectures relate the Onsager generators to the conserved charges obtained from semi-cyclic transfer matrices. The conjectures are motivated by two examples which are spin-1/2 XX model and spin-1 U(1)-invariant clock model. A novel construction of the semi-cyclic transfer matrices of spin-1 Zamolodchikov-Fateev model at arbitrary root of unity value of the anisotropy is carried out via transfer matrix fusion procedure.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.