Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum variational optimization: The role of entanglement and problem hardness (2103.14479v2)

Published 26 Mar 2021 in quant-ph

Abstract: Quantum variational optimization has been posed as an alternative to solve optimization problems faster and at a larger scale than what classical methods allow. In this paper we study systematically the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem, in the success and efficiency of these algorithms. For this purpose, our study focuses on the variational quantum eigensolver (VQE) algorithm, as applied to quadratic unconstrained binary optimization (QUBO) problems on random graphs with tunable density. Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology, specially for problems defined on low-dimensional graphs. Furthermore, we find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions. However, these techniques also improve the performance of Ans\"atze based on product states (no entanglement), suggesting that a new classical optimization method based on these could outperform existing NISQ architectures in certain regimes. Finally, our study also reveals a correlation between the hardness of a problem and the Hamming distance between the ground- and first-excited state, an idea that can be used to engineer benchmarks and understand the performance bottlenecks of optimization methods.

Summary

We haven't generated a summary for this paper yet.