Papers
Topics
Authors
Recent
Search
2000 character limit reached

Self-Supervised Learning in Multi-Task Graphs through Iterative Consensus Shift

Published 26 Mar 2021 in cs.LG and cs.CV | (2103.14417v3)

Abstract: The human ability to synchronize the feedback from all their senses inspired recent works in multi-task and multi-modal learning. While these works rely on expensive supervision, our multi-task graph requires only pseudo-labels from expert models. Every graph node represents a task, and each edge learns between tasks transformations. Once initialized, the graph learns self-supervised, based on a novel consensus shift algorithm that intelligently exploits the agreement between graph pathways to generate new pseudo-labels for the next learning cycle. We demonstrate significant improvement from one unsupervised learning iteration to the next, outperforming related recent methods in extensive multi-task learning experiments on two challenging datasets. Our code is available at https://github.com/bit-ml/cshift.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub

  1. GitHub - bit-ml/cshift (4 stars)