Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perov's Contraction Principle and Dynamic Programming with Stochastic Discounting (2103.14173v2)

Published 25 Mar 2021 in econ.TH, math.FA, and math.OC

Abstract: This paper shows the usefulness of Perov's contraction principle, which generalizes Banach's contraction principle to a vector-valued metric, for studying dynamic programming problems in which the discount factor can be stochastic. The discounting condition $\beta<1$ is replaced by $\rho(B)<1$, where $B$ is an appropriate nonnegative matrix and $\rho$ denotes the spectral radius. Blackwell's sufficient condition is also generalized in this setting. Applications to asset pricing and optimal savings are discussed.

Summary

We haven't generated a summary for this paper yet.