Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beurling quotient modules on the polydisc (2103.13981v1)

Published 25 Mar 2021 in math.FA, math.CV, and math.OA

Abstract: Let $H2(\mathbb{D}n)$ denote the Hardy space over the polydisc $\mathbb{D}n$, $n \geq 2$. A closed subspace $\mathcal{Q} \subseteq H2(\mathbb{D}n)$ is called Beurling quotient module if there exists an inner function $\theta \in H\infty(\mathbb{D}n)$ such that $\mathcal{Q} = H2(\mathbb{D}n) /\theta H2(\mathbb{D}n)$. We present a complete characterization of Beurling quotient modules of $H2(\mathbb{D}n)$: Let $\mathcal{Q} \subseteq H2(\mathbb{D}n)$ be a closed subspace, and let $C_{z_i} = P_{\mathcal{Q}} M_{z_i}|{\mathcal{Q}}$, $i=1, \ldots, n$. Then $\mathcal{Q}$ is a Beurling quotient module if and only if [ (I{\mathcal{Q}} - C_{z_i}* C_{z_i}) (I_{\mathcal{Q}} - C_{z_j}* C_{z_j}) = 0 \qquad (i \neq j). ] We present two applications: first, we obtain a dilation theorem for Brehmer $n$-tuples of commuting contractions, and, second, we relate joint invariant subspaces with factorizations of inner functions. All results work equally well for general vector-valued Hardy spaces.

Summary

We haven't generated a summary for this paper yet.