Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-optimal approximation methods for elliptic PDEs with lognormal coefficients (2103.13935v1)

Published 25 Mar 2021 in math.NA and cs.NA

Abstract: This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form $-{\rm div}(a\nabla u)=f$ where $a=\exp(b)$ and $b$ is a Gaussian random field. The approximant of the solution $u$ is an $n$-term polynomial expansion in the scalar Gaussian random variables that parametrize $b$. We present a general convergence analysis of weighted least-squares approximants for smooth and arbitrarily rough random field, using a suitable random design, for which we prove optimality in the following sense: their convergence rate matches exactly or closely the rate that has been established in \cite{BCDM} for best $n$-term approximation by Hermite polynomials, under the same minimial assumptions on the Gaussian random field. This is in contrast with the current state of the art results for the stochastic Galerkin method that suffers the lack of coercivity due to the lognormal nature of the diffusion field. Numerical tests with $b$ as the Brownian bridge confirm our theoretical findings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Albert Cohen (55 papers)
  2. Giovanni Migliorati (11 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.