Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kleiss-Kuijf Relations from Momentum Amplituhedron Geometry (2103.13908v1)

Published 25 Mar 2021 in hep-th

Abstract: In recent years, it has been understood that color-ordered scattering amplitudes can be encoded as logarithmic differential forms on positive geometries. In particular, amplitudes in maximally supersymmetric Yang-Mills theory in spinor helicity space are governed by the momentum amplituhedron. Due to the group-theoretic structure underlying color decompositions, color-ordered amplitudes enjoy various identities which relate different orderings. In this paper, we show how the Kleiss-Kuijf relations arise from the geometry of the momentum amplituhedron. We also show how similar relations can be realised for the kinematic associahedron, which is the positive geometry of bi-adjoint scalar cubic theory.

Summary

We haven't generated a summary for this paper yet.