Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Examining mobility data justice during 2017 Hurricane Harvey (2103.13879v1)

Published 20 Mar 2021 in cs.SI, physics.soc-ph, and stat.AP

Abstract: Natural disasters can significantly disrupt human mobility in urban areas. Studies have attempted to understand and quantify such disruptions using crowdsourced mobility data sets. However, limited research has studied the justice issues of mobility data in the context of natural disasters. The lack of research leaves us without an empirical foundation to quantify and control the possible biases in the data. This study, using 2017 Hurricane Harvey as a case study, explores three aspects of mobility data that could potentially cause injustice: representativeness, quality, and precision. We find representativeness being a major factor contributing to mobility data injustice. There is a persistent disparity of representativeness across neighborhoods of different socioeconomic characteristics before, during, and after the hurricane's landfall. Additionally, we observed significant drops of data precision during the hurricane, adding uncertainty to locate people and understand their movements during extreme weather events. The findings highlight the necessity in understanding and controlling the possible bias of mobility data as well as developing practical tools through data justice lenses in collecting and analyzing data during disasters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.