Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spanning tree enumeration via triangular rank-one perturbations of graph Laplacians (2103.13596v1)

Published 25 Mar 2021 in math.CO

Abstract: We present new short proofs of known spanning tree enumeration formulae for threshold and Ferrers graphs by showing that the Laplacian matrices of such graphs admit triangular rank-one perturbations. We then characterize the set of graphs whose Laplacian matrices admit triangular rank-one perturbations as the class of special 2-threshold graphs, introduced by Hung, Kloks, and Villaamil. Our work introduces (1) a new characterization of special 2-threshold graphs that generalizes the characterization of threshold graphs in terms of isolated and dominating vertices, and (2) a spanning tree enumeration formula for special 2-threshold graphs that reduces to the aforementioned formulae for threshold and Ferrers graphs. We consider both unweighted and weighted spanning tree enumeration.

Summary

We haven't generated a summary for this paper yet.