Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation (2103.13447v2)

Published 24 Mar 2021 in cs.CV

Abstract: In this paper, we present DRANet, a network architecture that disentangles image representations and transfers the visual attributes in a latent space for unsupervised cross-domain adaptation. Unlike the existing domain adaptation methods that learn associated features sharing a domain, DRANet preserves the distinctiveness of each domain's characteristics. Our model encodes individual representations of content (scene structure) and style (artistic appearance) from both source and target images. Then, it adapts the domain by incorporating the transferred style factor into the content factor along with learnable weights specified for each domain. This learning framework allows bi-/multi-directional domain adaptation with a single encoder-decoder network and aligns their domain shift. Additionally, we propose a content-adaptive domain transfer module that helps retain scene structure while transferring style. Extensive experiments show our model successfully separates content-style factors and synthesizes visually pleasing domain-transferred images. The proposed method demonstrates state-of-the-art performance on standard digit classification tasks as well as semantic segmentation tasks.

Citations (53)

Summary

We haven't generated a summary for this paper yet.