Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning based on MPC/MHE for Unmodeled and Partially Observable Dynamics

Published 22 Mar 2021 in eess.SY and cs.SY | (2103.11871v1)

Abstract: This paper proposes an observer-based framework for solving Partially Observable Markov Decision Processes (POMDPs) when an accurate model is not available. We first propose to use a Moving Horizon Estimation-Model Predictive Control (MHE-MPC) scheme in order to provide a policy for the POMDP problem, where the full state of the real process is not measured and necessarily known. We propose to parameterize both MPC and MHE formulations, where certain adjustable parameters are regarded for tuning the policy. In this paper, for the sake of tackling the unmodeled and partially observable dynamics, we leverage the Reinforcement Learning (RL) to tune the parameters of MPC and MHE schemes jointly, with the closed-loop performance of the policy as a goal rather than model fitting or the MHE performance. Illustrations show that the proposed approach can effectively increase the performance of close-loop control of systems formulated as POMDPs.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.