Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Neural Tangent Kernel: A Generalized and Improved Network-Induced Kernel (2103.11558v1)

Published 22 Mar 2021 in cs.LG

Abstract: The Neural Tangent Kernel (NTK) has recently attracted intense study, as it describes the evolution of an over-parameterized Neural Network (NN) trained by gradient descent. However, it is now well-known that gradient descent is not always a good optimizer for NNs, which can partially explain the unsatisfactory practical performance of the NTK regression estimator. In this paper, we introduce the Weighted Neural Tangent Kernel (WNTK), a generalized and improved tool, which can capture an over-parameterized NN's training dynamics under different optimizers. Theoretically, in the infinite-width limit, we prove: i) the stability of the WNTK at initialization and during training, and ii) the equivalence between the WNTK regression estimator and the corresponding NN estimator with different learning rates on different parameters. With the proposed weight update algorithm, both empirical and analytical WNTKs outperform the corresponding NTKs in numerical experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lei Tan (60 papers)
  2. Shutong Wu (8 papers)
  3. Xiaolin Huang (101 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.