Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An inverse-type problem for cycles in local Cayley distance graphs (2103.11420v2)

Published 21 Mar 2021 in math.CO

Abstract: Let $E$ be a proper symmetric subset of $S{d-1}$, and $C_{\mathbb{F}qd}(E)$ be the Cayley graph with the vertex set $\mathbb{F}_qd$, and two vertices $x$ and $y$ are connected by an edge if $x-y\in E$. Let $k\ge 2$ be a positive integer. We show that for any $\alpha\in (0, 1)$, there exists $q(\alpha, k)$ large enough such that if $E\subset S{d-1}\subset \mathbb{F}_qd$ with $|E|\ge \alpha q{d-1}$ and $q\ge q(\alpha, k)$, then for each vertex $v$, there are at least $c(\alpha, k)q{\frac{(2k-1)d-4k}{2}}$ cycles of length $2k$ with distinct vertices in $C{\mathbb{F}_qd}(E)$ containing $v$. This result is the inverse version of a recent result due to Iosevich, Jardine, and McDonald (2021).

Summary

We haven't generated a summary for this paper yet.