Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Level Set Kalman Filter for State Estimation of Continuous-discrete Systems (2103.11130v3)

Published 20 Mar 2021 in eess.SY and cs.SY

Abstract: We propose a new extension of Kalman filtering for continuous-discrete systems with nonlinear state-space models that we name as the level set Kalman filter (LSKF). The LSKF assumes the probability distribution can be approximated as a Gaussian, and updates the Gaussian distribution through a time-update step and a measurement-update step. The LSKF improves the time-update step when compared to existing methods, such as the continuous-discrete cubature Kalman filter (CD-CKF) by reformulating the underlying Fokker-Planck equation as an ordinary differential equation for the Gaussian, thereby avoiding expansion in time. Together with a carefully picked measurement-update method, numerical experiments show that the LSKF has a consistent performance improvement over CD-CKF for a range of parameters, while also simplifies the implementation, as no user-defined timestep subdivision between measurements is required, and the spatial derivatives of the drift function are not explicitly needed.

Citations (6)

Summary

We haven't generated a summary for this paper yet.