Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Keywords Guided Method Name Generation (2103.11118v1)

Published 20 Mar 2021 in cs.SE

Abstract: High quality method names are descriptive and readable, which are helpful for code development and maintenance. The majority of recent research suggest method names based on the text summarization approach. They take the token sequence and abstract syntax tree of the source code as input, and generate method names through a powerful neural network based model. However, the tokens composing the method name are closely related to the entity name within its method implementation. Actually, high proportions of the tokens in method name can be found in its corresponding method implementation, which makes it possible for incorporating these common shared token information to improve the performance of method naming task. Inspired by this key observation, we propose a two-stage keywords guided method name generation approach to suggest method names. Specifically, we decompose the method naming task into two subtasks, including keywords extraction task and method name generation task. For the keywords extraction task, we apply a graph neural network based model to extract the keywords from source code. For the method name generation task, we utilize the extracted keywords to guide the method name generation model. We apply a dual selective gate in encoder to control the information flow, and a dual attention mechanism in decoder to combine the semantics of input code sequence and keywords. Experiment results on an open source dataset demonstrate that keywords guidance can facilitate method naming task, which enables our model to outperform the competitive state-of-the-art models by margins of 1.5\%-3.5\% in ROUGE metrics. Especially when programs share one common token with method names, our approach improves the absolute ROUGE-1 score by 7.8\%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fan Ge (14 papers)
  2. Li Kuang (8 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.