Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring The Effect of High-frequency Components in GANs Training (2103.11093v2)

Published 20 Mar 2021 in cs.CV

Abstract: Generative Adversarial Networks (GANs) have the ability to generate images that are visually indistinguishable from real images. However, recent studies have revealed that generated and real images share significant differences in the frequency domain. In this paper, we explore the effect of high-frequency components in GANs training. According to our observation, during the training of most GANs, severe high-frequency differences make the discriminator focus on high-frequency components excessively, which hinders the generator from fitting the low-frequency components that are important for learning images' content. Then, we propose two simple yet effective frequency operations for eliminating the side effects caused by high-frequency differences in GANs training: High-Frequency Confusion (HFC) and High-Frequency Filter (HFF). The proposed operations are general and can be applied to most existing GANs with a fraction of the cost. The advanced performance of the proposed operations is verified on multiple loss functions, network architectures, and datasets. Specifically, the proposed HFF achieves significant improvements of $42.5\%$ FID on CelebA (128*128) unconditional generation based on SNGAN, $30.2\%$ FID on CelebA unconditional generation based on SSGAN, and $69.3\%$ FID on CelebA unconditional generation based on InfoMAXGAN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ziqiang Li (40 papers)
  2. Pengfei Xia (28 papers)
  3. Xue Rui (8 papers)
  4. Bin Li (514 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.