Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mode-wise Tensor Decompositions: Multi-dimensional Generalizations of CUR Decompositions (2103.11037v2)

Published 19 Mar 2021 in math.NA, cs.IT, cs.LG, cs.NA, eess.IV, and math.IT

Abstract: Low rank tensor approximation is a fundamental tool in modern machine learning and data science. In this paper, we study the characterization, perturbation analysis, and an efficient sampling strategy for two primary tensor CUR approximations, namely Chidori and Fiber CUR. We characterize exact tensor CUR decompositions for low multilinear rank tensors. We also present theoretical error bounds of the tensor CUR approximations when (adversarial or Gaussian) noise appears. Moreover, we show that low cost uniform sampling is sufficient for tensor CUR approximations if the tensor has an incoherent structure. Empirical performance evaluations, with both synthetic and real-world datasets, establish the speed advantage of the tensor CUR approximations over other state-of-the-art low multilinear rank tensor approximations.

Citations (19)

Summary

We haven't generated a summary for this paper yet.