Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Experiment Study on Federated LearningTestbed (2103.10579v1)

Published 19 Mar 2021 in cs.CR and cs.NI

Abstract: While the Internet of Things (IoT) can benefit from machine learning by outsourcing model training on the cloud, user data exposure to an untrusted cloud service provider can pose threat to user privacy. Recently, federated learning is proposed as an approach for privacy-preserving machine learning (PPML) for the IoT, while its practicability remains unclear. This work presents the evaluation on the efficiency and privacy performance of a readily available federated learning framework based on PySyft, a Python library for distributed deep learning. It is observed that the training speed of the framework is significantly slower than of the centralized approach due to communication overhead. Meanwhile, the framework bears some vulnerability to potential man-in-the-middle attacks at the network level. The report serves as a starting point for PPML performance analysis and suggests the future direction for PPML framework development.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Cheng Shen (21 papers)
  2. Wanli Xue (13 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.