Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lyapunov Barrier Policy Optimization (2103.09230v1)

Published 16 Mar 2021 in cs.LG, cs.AI, and cs.RO

Abstract: Deploying Reinforcement Learning (RL) agents in the real-world require that the agents satisfy safety constraints. Current RL agents explore the environment without considering these constraints, which can lead to damage to the hardware or even other agents in the environment. We propose a new method, LBPO, that uses a Lyapunov-based barrier function to restrict the policy update to a safe set for each training iteration. Our method also allows the user to control the conservativeness of the agent with respect to the constraints in the environment. LBPO significantly outperforms state-of-the-art baselines in terms of the number of constraint violations during training while being competitive in terms of performance. Further, our analysis reveals that baselines like CPO and SDDPG rely mostly on backtracking to ensure safety rather than safe projection, which provides insight into why previous methods might not have effectively limit the number of constraint violations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Harshit Sikchi (18 papers)
  2. Wenxuan Zhou (61 papers)
  3. David Held (81 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.