Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph-Based Multiobject Tracking with Embedded Particle Flow (2103.08968v1)

Published 16 Mar 2021 in eess.SP, cs.MA, cs.RO, cs.SY, and eess.SY

Abstract: Seamless situational awareness provided by modern radar systems relies on effective methods for multiobject tracking (MOT). This paper presents a graph-based Bayesian method for nonlinear and high-dimensional MOT problems that embeds particle flow. To perform operations on the graph effectively, particles are migrated towards regions of high likelihood based on the solution of a partial differential equation. This makes it possible to obtain good object detection and tracking performance with a relatively small number of particles even if object states are high dimensional and sensor measurements are very informative. Simulation results demonstrate reduced computational complexity and memory requirements as well as favorable detection and estimation accuracy in a challenging 3-D MOT scenario.

Citations (9)

Summary

We haven't generated a summary for this paper yet.