Papers
Topics
Authors
Recent
Search
2000 character limit reached

Predicting hyperlinks via hypernetwork loop structure

Published 16 Mar 2021 in cs.SI and physics.soc-ph | (2103.08926v1)

Abstract: While links in simple networks describe pairwise interactions between nodes, it is necessary to incorporate hypernetworks for modeling complex systems with arbitrary-sized interactions. In this study, we focus on the hyperlink prediction problem in hypernetworks, for which the current state-of-art methods are latent-feature-based. A practical algorithm via topological features, which can provide understandings of the organizational principles of hypernetworks, is still lacking. For simple networks, local clustering or loop reflects the correlations among nodes; therefore, loop-based link prediction algorithms have achieved accurate performance. Extending the idea to hyperlink prediction faces several challenges. For instance, what is an effective way of defining loops for prediction is not clear yet; besides, directly comparing topological statistics of variable-sized hyperlinks could introduce biases in hyperlink cardinality. In this study, we address the issues and propose a loop-based hyperlink prediction approach. First, we discuss and define the loops in hypernetworks; then, we transfer the loop-features into a hyperlink prediction algorithm via a simple modified logistic regression. Numerical experiments on multiple real-world datasets demonstrate superior performance compared to the state-of-the-art methods.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.