Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HDTest: Differential Fuzz Testing of Brain-Inspired Hyperdimensional Computing (2103.08668v1)

Published 15 Mar 2021 in cs.NE

Abstract: Brain-inspired hyperdimensional computing (HDC) is an emerging computational paradigm that mimics brain cognition and leverages hyperdimensional vectors with fully distributed holographic representation and (pseudo)randomness. Compared to other ML methods such as deep neural networks (DNNs), HDC offers several advantages including high energy efficiency, low latency, and one-shot learning, making it a promising alternative candidate on a wide range of applications. However, the reliability and robustness of HDC models have not been explored yet. In this paper, we design, implement, and evaluate HDTest to test HDC model by automatically exposing unexpected or incorrect behaviors under rare inputs. The core idea of HDTest is based on guided differential fuzz testing. Guided by the distance between query hypervector and reference hypervector in HDC, HDTest continuously mutates original inputs to generate new inputs that can trigger incorrect behaviors of HDC model. Compared to traditional ML testing methods, HDTest does not need to manually label the original input. Using handwritten digit classification as an example, we show that HDTest can generate thousands of adversarial inputs with negligible perturbations that can successfully fool HDC models. On average, HDTest can generate around 400 adversarial inputs within one minute running on a commodity computer. Finally, by using the HDTest-generated inputs to retrain HDC models, we can strengthen the robustness of HDC models. To the best of our knowledge, this paper presents the first effort in systematically testing this emerging brain-inspired computational model.

Citations (22)

Summary

We haven't generated a summary for this paper yet.