Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the existence and multiplicity of solutions for the $ N $-Choquard logarithmic equation with exponential critical growth (2103.08103v2)

Published 15 Mar 2021 in math.AP

Abstract: In the present work we briefly explain how to adapt techniques already used in fractional and $p$-fractional Laplacian cases to obtain the existence of a nontrivial solution at the mountain pass level and a nontrivial ground state solution, for the critical case, and the existence of infinitely many solutions, for the subcritical case, to the Choquard Logarithmic equation, $-\Delta_N u + a(x)|u|{N-2}u + \lambda (\ln|\cdot|\ast |u|{N})|u|{N-2}u = f(u) \textrm{ in } \mathbb{R}N $, where $ a:\mathbb{R}N \rightarrow \mathbb{R} $, $ \lambda >0 $, $ N \geq 3 $ and $f: \mathbb{R} \rightarrow [0, \infty) $ is continuous function that behaves like $ \exp(\alpha |u|{\frac{N}{N-1}}) $ at infinity, for $ \alpha >0 $.

Summary

We haven't generated a summary for this paper yet.