Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Epidemics on Hypergraphs: Spectral Thresholds for Extinction (2103.07319v1)

Published 12 Mar 2021 in cs.SI, cs.DM, and math.DS

Abstract: Epidemic spreading is well understood when a disease propagates around a contact graph. In a stochastic susceptible-infected-susceptible setting, spectral conditions characterise whether the disease vanishes. However, modelling human interactions using a graph is a simplification which only considers pairwise relationships. This does not fully represent the more realistic case where people meet in groups. Hyperedges can be used to record such group interactions, yielding more faithful and flexible models, allowing for the rate of infection of a node to vary as a nonlinear function of the number of infectious neighbors. We discuss different types of contagion models in this hypergraph setting, and derive spectral conditions that characterize whether the disease vanishes. We study both the exact individual-level stochastic model and a deterministic mean field ODE approximation. Numerical simulations are provided to illustrate the analysis. We also interpret our results and show how the hypergraph model allows us to distinguish between contributions to infectiousness that (a) are inherent in the nature of the pathogen and (b) arise from behavioural choices (such as social distancing, increased hygiene and use of masks). This raises the possibility of more accurately quantifying the effect of interventions that are designed to contain the spread of a virus.

Citations (38)

Summary

We haven't generated a summary for this paper yet.