Quasi-collocation based on CCC-Schoenberg operators and collocation methods
Abstract: We propose a collocation and quasi-collocation method for solving second order boundary value problems $L_2 y=f$, in which the differential operator $L_2$ can be represented in the product formulation, aiming mostly on singular and singularly perturbed boundary value problems. Seeking an approximating Canonical Complete Chebyshev spline $s$ by a collocation method leads to demand that $L_2s$ interpolates the function $f$. On the other hand, in quasi-collocation method we require that $L_2 s$ is equal to an approximation of $f$ by the Schoenberg operator. We offer the calculation of both methods based on the Green's function, and give their error bounds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.