Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative robustness of instance ranking problems (2103.07198v2)

Published 12 Mar 2021 in math.ST and stat.TH

Abstract: Instance ranking problems intend to recover the true ordering of the instances in a data set with a variety of applications in for example scientific, social and financial contexts. Robust statistics studies the behaviour of estimators in the presence of perturbations of the data resp. the underlying distribution and provides different concepts to characterize local and global robustness. In this work, we concentrate on the global robustness of parametric ranking problems in terms of the breakdown point which measures the fraction of samples that need to be perturbed in order to let the estimator take unreasonable values. However, existing breakdown point notions do not cover ranking problems so far. We propose to define a breakdown of the estimator as a sign-reversal of all components which causes the predicted ranking to be potentially completely inverted, therefore we call our concept the order-inversal breakdown point (OIBDP). We will study the OIBDP, based on a linear model, for several different ranking problems that we carefully distinguish and provide least favorable outlier configurations, characterizations of the order-inversal breakdown point as well as sharp asymptotic upper bounds. We also outline the case of SVM-type ranking estimators.

Summary

We haven't generated a summary for this paper yet.