Normalized ground states for Kirchhoff equations in ${\mathbb{R}}^{3}$ with a critical nonlinearity (2103.07174v1)
Abstract: This paper is concerned with the existence of ground states for a class of Kirchhoff type equation with combined power nonlinearities \begin{equation*} -\left(a+b\int_{\mathbb{R}{3}}|\nabla u(x)|{2}\right) \Delta u =\lambda u+|u|{p-2}u+u{5}\quad \ \text{for some} \ \lambda\in\mathbb{R},\quad x\in\mathbb{R}{3}, \end{equation*} with prescribed $L{2}$-norm mass \begin{equation*} \int_{\mathbb{R}{3}}u{2}=c{2} \end{equation*} in Sobolev critical case and proves that the equation has a couple of solutions $(u_{c},\lambda_{c})\in S(c)\times \mathbb{R}$ for any $c>0$, $a,b >0$ and $\frac{14}{3}\leq p< 6,$ where $S(c)={u\in H{1}(\mathbb{R}{3}):\int_{\mathbb{R}{3}}u{2}=c{2}}.$ \textbf{Keywords:} Kirchhoff type equation; Critical nonlinearity; Normalized ground states \noindent{AMS Subject Classification:\, 37L05; 35B40; 35B41.}