Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reptile: Aggregation-level Explanations for Hierarchical Data (2103.07037v1)

Published 12 Mar 2021 in cs.DB

Abstract: Recent query explanation systems help users understand anomalies in aggregation results by proposing predicates that describe input records that, if deleted, would resolve the anomalies. However, it can be difficult for users to understand how a predicate was chosen, and these approaches are limited to errors that can be resolved through deletion. In contrast, data errors may be due to group-wise errors, such as missing records or systematic value errors. This paper presents Reptile, an explanation system for hierarchical data. Given an anomalous aggregate query result, Reptile recommends the next drill-down attribute,and ranks the drill-down groups based on the extent repairing the group's statistics to its expected values resolves the anomaly. Reptile efficiently trains a multi-level model that leverages the data's hierarchy to estimate the expected values, and uses a factorised representation of the feature matrix to remove redundancies due to the data's hierarchical structure. We further extend model training to support factorised data, and develop a suite of optimizations that leverage the data's hierarchical structure. Reptile reduces end-to-end runtimes by more than 6 times compared to a Matlab-based implementation, correctly identifies 21/30 data errors in John Hopkin's COVID-19 data, and correctly resolves 20/22 complaints in a user study using data and researchers from Columbia University's Financial Instruments Sector Team.

Citations (2)

Summary

We haven't generated a summary for this paper yet.