Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Level Theory, parts 1-3 (2103.06715v3)

Published 11 Mar 2021 in math.LO

Abstract: This document comprises Level Theory, parts 1-3. PART 1. The following bare-bones story introduces the idea of a cumulative hierarchy of pure sets: 'Sets are arranged in stages. Every set is found at some stage. At any stage S: for any sets found before S, we find a set whose members are exactly those sets. We find nothing else at S.' Surprisingly, this story already guarantees that the sets are arranged in well-ordered levels, and suffices for quasi-categoricity. I show this by presenting Level Theory, a simplifiation of set theories due to Scott, Montague, Derrick, and Potter. PART 2. Potentialists think that the concept of set is importantly modal. Using tensed language as an heuristic, the following bare-bones story introduces the idea of a potential hierarchy of sets: 'Always: for any sets that existed, there is a set whose members are exactly those sets; there are no other sets.' Surprisingly, this story already guarantees well-foundedness and persistence. Moreover, if we assume that time is linear, the ensuing modal set theory is almost definitionally equivalent with non-modal set theories; specifically, with Level Theory, as developed in Part 1. PART 3. On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway's games and surreal numbers; and a natural extension of BLT is definitionally equivalent with ZF.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com