Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sequential Convex Programming Approach to Solving Quadratic Programs and Optimal Control Problems with Linear Complementarity Constraints (2103.05965v4)

Published 10 Mar 2021 in math.OC

Abstract: Mathematical programs with complementarity constraints are notoriously difficult to solve due to their nonconvexity and lack of constraint qualifications in every feasible point. This work focuses on the subclass of quadratic programs with linear complementarity constraints. A novel approach to solving a penalty reformulation using sequential convex programming and a homotopy on the penalty parameter is introduced. Linearizing the necessarily nonconvex penalty function yields convex quadratic subproblems, which have a constant Hessian matrix throughout all iterates. This allows solution computation with a single KKT matrix factorization. Furthermore, a globalization scheme is introduced in which the underlying merit function is minimized analytically, and guarantee of descent is provided at each iterate. The algorithmic features and possible computational speedups are illustrated in a numerical experiment.

Summary

We haven't generated a summary for this paper yet.