Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A variational inference framework for inverse problems (2103.05909v4)

Published 10 Mar 2021 in stat.ME, stat.AP, and stat.ML

Abstract: A framework is presented for fitting inverse problem models via variational Bayes approximations. This methodology guarantees flexibility to statistical model specification for a broad range of applications, good accuracy and reduced model fitting times. The message passing and factor graph fragment approach to variational Bayes that is also described facilitates streamlined implementation of approximate inference algorithms and allows for supple inclusion of numerous response distributions and penalizations into the inverse problem model. Models for one- and two-dimensional response variables are examined and an infrastructure is laid down where efficient algorithm updates based on nullifying weak interactions between variables can also be derived for inverse problems in higher dimensions. An image processing application and a simulation exercise motivated by biomedical problems reveal the computational advantage offered by efficient implementation of variational Bayes over Markov chain Monte Carlo.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets