Three supercongruences for Apery numbers or Franel numbers (2103.05830v1)
Abstract: The Ap\'ery numbers $A_n$ and the Franel numbers $f_n$ are defined by $$A_n=\sum_{k=0}{n}{\binom{n+k}{2k}}2{\binom{2k}{k}}2\ \ \ \ \ {\rm and }\ \ \ \ \ \ f_n=\sum_{k=0}{n}{\binom{n}{k}}3(n=0, 1, \cdots,).$$ In this paper, we prove three supercongruences for Ap\'ery numbers or Franel numbers conjectured by Z.-W. Sun. Let $p\geq 5$ be a prime and let $n\in \mathbb{Z}{+}$. We show that \begin{align} \notag \frac{1}{n}\bigg(\sum_{k=0}{pn-1}(2k+1)A_k-p\sum_{k=0}{n-1}(2k+1)A_k\bigg)\equiv0\pmod{p{4+3\nu_p(n)}} \end{align} and \begin{align}\notag \frac{1}{n3}\bigg(\sum_{k=0}{pn-1}(2k+1)3A_k-p3\sum_{k=0}{n-1}(2k+1)3A_k\bigg)\equiv0\pmod{p{6+3\nu_p(n)}}, \end{align} where $\nu_p(n)$ denotes the $p$-adic order of $n$. Also, for any prime $p$ we have \begin{align} \notag \frac{1}{n3}\bigg(\sum_{k=0}{pn-1}(3k+2)(-1)kf_k-p2\sum_{k=0}{n-1}(3k+2)(-1)kf_k\bigg)\equiv0\pmod{p{3}}. \end{align}