Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second-order fast-slow dynamics of non-ergodic Hamiltonian systems: Thermodynamic interpretation and simulation (2103.05778v2)

Published 9 Mar 2021 in math-ph, math.CA, math.DS, and math.MP

Abstract: A class of fast-slow Hamiltonian systems with potential $U_\varepsilon$ describing the interaction of non-ergodic fast and slow degrees of freedom is studied. The parameter $\varepsilon$ indicates the typical timescale ratio of the fast and slow degrees of freedom. It is known that the Hamiltonian system converges for $\varepsilon\to0$ to a homogenised Hamiltonian system. We study the situation where $\varepsilon$ is small but positive. First, we rigorously derive the second-order corrections to the homogenised (slow) degrees of freedom. They can be decomposed into explicitly given terms that oscillate rapidly around zero and terms that trace the average motion of the corrections, which are given as the solution to an inhomogeneous linear system of differential equations. Then, we analyse the energy of the fast degrees of freedom expanded to second-order from a thermodynamic point of view. In particular, we define and expand to second-order a temperature, an entropy and external forces and show that they satisfy to leading-order, as well as on average to second-order, thermodynamic energy relations akin to the first and second law of thermodynamics. Finally, we analyse for a specific fast-slow Hamiltonian system the second-order asymptotic expansion of the slow degrees of freedom from a numerical point of view. Their approximation quality for short and long time frames and their total computation time are compared with those of the solution to the original fast-slow Hamiltonian system of similar accuracy.

Summary

We haven't generated a summary for this paper yet.