Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Edge-Oriented Reasoning for 3D Point-based Scene Graph Analysis (2103.05558v2)

Published 9 Mar 2021 in cs.CV

Abstract: Scene understanding is a critical problem in computer vision. In this paper, we propose a 3D point-based scene graph generation ($\mathbf{SGG_{point}}$) framework to effectively bridge perception and reasoning to achieve scene understanding via three sequential stages, namely scene graph construction, reasoning, and inference. Within the reasoning stage, an EDGE-oriented Graph Convolutional Network ($\texttt{EdgeGCN}$) is created to exploit multi-dimensional edge features for explicit relationship modeling, together with the exploration of two associated twinning interaction mechanisms between nodes and edges for the independent evolution of scene graph representations. Overall, our integrated $\mathbf{SGG_{point}}$ framework is established to seek and infer scene structures of interest from both real-world and synthetic 3D point-based scenes. Our experimental results show promising edge-oriented reasoning effects on scene graph generation studies. We also demonstrate our method advantage on several traditional graph representation learning benchmark datasets, including the node-wise classification on citation networks and whole-graph recognition problems for molecular analysis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chaoyi Zhang (51 papers)
  2. Jianhui Yu (19 papers)
  3. Yang Song (299 papers)
  4. Weidong Cai (118 papers)
Citations (42)