On a denseness result for quasi-infinitely divisible distributions
Abstract: A probability distribution $\mu$ on $\mathbb{R}d$ is quasi-infinitely divisible if its characteristic function has the representation $\widehat{\mu} = \widehat{\mu_1}/\widehat{\mu_2}$ with infinitely divisible distributions $\mu_1$ and $\mu_2$. In \cite[Thm. 4.1]{lindner2018} it was shown that the class of quasi-infinitely divisible distributions on $\mathbb{R}$ is dense in the class of distributions on $\mathbb{R}$ with respect to weak convergence. In this paper, we show that the class of quasi-infinitely divisible distributions on $\mathbb{R}d$ is not dense in the class of distributions on $\mathbb{R}d$ with respect to weak convergence if $d \geq 2$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.