Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text Simplification by Tagging (2103.05070v1)

Published 8 Mar 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Edit-based approaches have recently shown promising results on multiple monolingual sequence transduction tasks. In contrast to conventional sequence-to-sequence (Seq2Seq) models, which learn to generate text from scratch as they are trained on parallel corpora, these methods have proven to be much more effective since they are able to learn to make fast and accurate transformations while leveraging powerful pre-trained LLMs. Inspired by these ideas, we present TST, a simple and efficient Text Simplification system based on sequence Tagging, leveraging pre-trained Transformer-based encoders. Our system makes simplistic data augmentations and tweaks in training and inference on a pre-existing system, which makes it less reliant on large amounts of parallel training data, provides more control over the outputs and enables faster inference speeds. Our best model achieves near state-of-the-art performance on benchmark test datasets for the task. Since it is fully non-autoregressive, it achieves faster inference speeds by over 11 times than the current state-of-the-art text simplification system.

Citations (44)

Summary

We haven't generated a summary for this paper yet.