Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Model Checking with Imprecise Markov Reward Models (2103.04841v2)

Published 8 Mar 2021 in cs.LO, math.LO, and math.PR

Abstract: In recent years probabilistic model checking has become an important area of research because of the diffusion of computational systems of stochastic nature. Despite its great success, standard probabilistic model checking suffers the limitation of requiring a sharp specification of the probabilities governing the model behaviour. The theory of imprecise probabilities offers a natural approach to overcome such limitation by a sensitivity analysis with respect to the values of these parameters. However, only extensions based on discrete-time imprecise Markov chains have been considered so far for such a robust approach to model checking. We present a further extension based on imprecise Markov reward models. In particular, we derive efficient algorithms to compute lower and upper bounds of the expected cumulative reward and probabilistic bounded rewards based on existing results for imprecise Markov chains. These ideas are tested on a real case study involving the spend-down costs of geriatric medicine departments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.