Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient Algorithms for Finite Horizon and Streaming Restless Multi-Armed Bandit Problems

Published 8 Mar 2021 in cs.LG and cs.AI | (2103.04730v3)

Abstract: We propose Streaming Bandits, a Restless Multi Armed Bandit (RMAB) framework in which heterogeneous arms may arrive and leave the system after staying on for a finite lifetime. Streaming Bandits naturally capture the health intervention planning problem, where health workers must manage the health outcomes of a patient cohort while new patients join and existing patients leave the cohort each day. Our contributions are as follows: (1) We derive conditions under which our problem satisfies indexability, a precondition that guarantees the existence and asymptotic optimality of the Whittle Index solution for RMABs. We establish the conditions using a polytime reduction of the Streaming Bandit setup to regular RMABs. (2) We further prove a phenomenon that we call index decay, whereby the Whittle index values are low for short residual lifetimes driving the intuition underpinning our algorithm. (3) We propose a novel and efficient algorithm to compute the index-based solution for Streaming Bandits. Unlike previous methods, our algorithm does not rely on solving the costly finite horizon problem on each arm of the RMAB, thereby lowering the computational complexity compared to existing methods. (4) Finally, we evaluate our approach via simulations run on realworld data sets from a tuberculosis patient monitoring task and an intervention planning task for improving maternal healthcare, in addition to other synthetic domains. Across the board, our algorithm achieves a 2-orders-of-magnitude speed-up over existing methods while maintaining the same solution quality.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.