Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexible marked spatio-temporal point processes with applications to event sequences from association football (2103.04647v3)

Published 8 Mar 2021 in stat.AP and stat.ME

Abstract: We develop a new family of marked point processes by focusing the characteristic properties of marked Hawkes processes exclusively to the space of marks, providing the freedom to specify a different model for the occurrence times. This is possible through the decomposition of the joint distribution of marks and times that allows to separately specify the conditional distribution of marks given the filtration of the process and the current time. We develop a Bayesian framework for the inference and prediction from this family of marked point processes that can naturally accommodate process and point-specific covariate information to drive cross-excitations, offering wide flexibility and applicability in the modelling of real-world processes. The framework is used here for the modelling of in-game event sequences from association football, resulting not only in inferences about previously unquantified characteristics of game dynamics and extraction of event-specific team abilities, but also in predictions for the occurrence of events of interest, such as goals, corners or fouls in a specified interval of time.

Summary

We haven't generated a summary for this paper yet.