Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

No Weighted-Regret Learning in Adversarial Bandits with Delays (2103.04550v2)

Published 8 Mar 2021 in cs.LG and cs.GT

Abstract: Consider a scenario where a player chooses an action in each round $t$ out of $T$ rounds and observes the incurred cost after a delay of $d_{t}$ rounds. The cost functions and the delay sequence are chosen by an adversary. We show that in a non-cooperative game, the expected weighted ergodic distribution of play converges to the set of coarse correlated equilibria if players use algorithms that have "no weighted-regret" in the above scenario, even if they have linear regret due to too large delays. For a two-player zero-sum game, we show that no weighted-regret is sufficient for the weighted ergodic average of play to converge to the set of Nash equilibria. We prove that the FKM algorithm with $n$ dimensions achieves an expected regret of $O\left(nT{\frac{3}{4}}+\sqrt{n}T{\frac{1}{3}}D{\frac{1}{3}}\right)$ and the EXP3 algorithm with $K$ arms achieves an expected regret of $O\left(\sqrt{\log K\left(KT+D\right)}\right)$ even when $D=\sum_{t=1}{T}d_{t}$ and $T$ are unknown. These bounds use a novel doubling trick that, under mild assumptions, provably retains the regret bound for when $D$ and $T$ are known. Using these bounds, we show that FKM and EXP3 have no weighted-regret even for $d_{t}=O\left(t\log t\right)$. Therefore, algorithms with no weighted-regret can be used to approximate a CCE of a finite or convex unknown game that can only be simulated with bandit feedback, even if the simulation involves significant delays.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ilai Bistritz (11 papers)
  2. Zhengyuan Zhou (60 papers)
  3. Xi Chen (1036 papers)
  4. Nicholas Bambos (27 papers)
  5. Jose Blanchet (143 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.