Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uplink Power Control in Massive MIMO with Double Scattering Channels (2103.04129v3)

Published 6 Mar 2021 in cs.IT and math.IT

Abstract: Massive multiple-input multiple-output (MIMO) is a key technology for improving the spectral and energy efficiency in 5G-and-beyond wireless networks. For a tractable analysis, most of the previous works on Massive MIMO have been focused on the system performance with complex Gaussian channel impulse responses under rich-scattering environments. In contrast, this paper investigates the uplink ergodic spectral efficiency (SE) of each user under the double scattering channel model. We derive a closed-form expression of the uplink ergodic SE by exploiting the maximum ratio (MR) combining technique based on imperfect channel state information. We further study the asymptotic SE behaviors as a function of the number of antennas at each base station (BS) and the number of scatterers available at each radio channel. We then formulate and solve a total energy optimization problem for the uplink data transmission that aims at simultaneously satisfying the required SEs from all the users with limited data power resource. Notably, our proposed algorithms can cope with the congestion issue appearing when at least one user is served by lower SE than requested. Numerical results illustrate the effectiveness of the closed-form ergodic SE over Monte-Carlo simulations. Besides, the system can still provide the required SEs to many users even under congestion.

Citations (19)

Summary

We haven't generated a summary for this paper yet.