Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NeRD: Neural Representation of Distribution for Medical Image Segmentation (2103.04020v1)

Published 6 Mar 2021 in eess.IV, cs.CV, and cs.LG

Abstract: We introduce Neural Representation of Distribution (NeRD) technique, a module for convolutional neural networks (CNNs) that can estimate the feature distribution by optimizing an underlying function mapping image coordinates to the feature distribution. Using NeRD, we propose an end-to-end deep learning model for medical image segmentation that can compensate the negative impact of feature distribution shifting issue caused by commonly used network operations such as padding and pooling. An implicit function is used to represent the parameter space of the feature distribution by querying the image coordinate. With NeRD, the impact of issues such as over-segmenting and missing have been reduced, and experimental results on the challenging white matter lesion segmentation and left atrial segmentation verify the effectiveness of the proposed method. The code is available via https://github.com/tinymilky/NeRD.

Citations (14)

Summary

We haven't generated a summary for this paper yet.