Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fast On-Device Adaptation for Spiking Neural Networks via Online-Within-Online Meta-Learning

Published 21 Feb 2021 in cs.NE, cs.LG, and eess.SP | (2103.03901v1)

Abstract: Spiking Neural Networks (SNNs) have recently gained popularity as machine learning models for on-device edge intelligence for applications such as mobile healthcare management and natural language processing due to their low power profile. In such highly personalized use cases, it is important for the model to be able to adapt to the unique features of an individual with only a minimal amount of training data. Meta-learning has been proposed as a way to train models that are geared towards quick adaptation to new tasks. The few existing meta-learning solutions for SNNs operate offline and require some form of backpropagation that is incompatible with the current neuromorphic edge-devices. In this paper, we propose an online-within-online meta-learning rule for SNNs termed OWOML-SNN, that enables lifelong learning on a stream of tasks, and relies on local, backprop-free, nested updates.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.