Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parsing Indonesian Sentence into Abstract Meaning Representation using Machine Learning Approach (2103.03730v1)

Published 5 Mar 2021 in cs.CL and cs.AI

Abstract: Abstract Meaning Representation (AMR) provides many information of a sentence such as semantic relations, coreferences, and named entity relation in one representation. However, research on AMR parsing for Indonesian sentence is fairly limited. In this paper, we develop a system that aims to parse an Indonesian sentence using a machine learning approach. Based on Zhang et al. work, our system consists of three steps: pair prediction, label prediction, and graph construction. Pair prediction uses dependency parsing component to get the edges between the words for the AMR. The result of pair prediction is passed to the label prediction process which used a supervised learning algorithm to predict the label between the edges of the AMR. We used simple sentence dataset that is gathered from articles and news article sentences. Our model achieved the SMATCH score of 0.820 for simple sentence test data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (4)

Summary

We haven't generated a summary for this paper yet.