Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distribution-free uncertainty quantification for classification under label shift (2103.03323v4)

Published 4 Mar 2021 in stat.ML and cs.LG

Abstract: Trustworthy deployment of ML models requires a proper measure of uncertainty, especially in safety-critical applications. We focus on uncertainty quantification (UQ) for classification problems via two avenues -- prediction sets using conformal prediction and calibration of probabilistic predictors by post-hoc binning -- since these possess distribution-free guarantees for i.i.d. data. Two common ways of generalizing beyond the i.i.d. setting include handling covariate and label shift. Within the context of distribution-free UQ, the former has already received attention, but not the latter. It is known that label shift hurts prediction, and we first argue that it also hurts UQ, by showing degradation in coverage and calibration. Piggybacking on recent progress in addressing label shift (for better prediction), we examine the right way to achieve UQ by reweighting the aforementioned conformal and calibration procedures whenever some unlabeled data from the target distribution is available. We examine these techniques theoretically in a distribution-free framework and demonstrate their excellent practical performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Aleksandr Podkopaev (6 papers)
  2. Aaditya Ramdas (180 papers)
Citations (75)

Summary

We haven't generated a summary for this paper yet.