Papers
Topics
Authors
Recent
2000 character limit reached

Optimization-based parametric model order reduction via $\mathcal{H}_2\otimes\mathcal{L}_2$ first-order necessary conditions

Published 4 Mar 2021 in math.OC, cs.NA, cs.SY, eess.SY, and math.NA | (2103.03136v3)

Abstract: In this paper, we generalize existing frameworks for $\mathcal{H}_2\otimes\mathcal{L}_2$-optimal model order reduction to a broad class of parametric linear time-invariant systems. To this end, we derive first-order necessary ptimality conditions for a class of structured reduced-order models, and then building on those, propose a stability-preserving optimization-based method for computing locally $\mathcal{H}_2\otimes\mathcal{L}_2$-optimal reduced-order models. We also make a theoretical comparison to existing approaches in the literature, and in numerical experiments, show how our new method, with reasonable computational effort, produces stable optimized reduced-order models with significantly lower approximation errors.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.