Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Artificial Intelligence through the Lens of Feature Interaction (2103.03103v1)

Published 1 Mar 2021 in cs.LG

Abstract: Interpretation of deep learning models is a very challenging problem because of their large number of parameters, complex connections between nodes, and unintelligible feature representations. Despite this, many view interpretability as a key solution to trustworthiness, fairness, and safety, especially as deep learning is applied to more critical decision tasks like credit approval, job screening, and recidivism prediction. There is an abundance of good research providing interpretability to deep learning models; however, many of the commonly used methods do not consider a phenomenon called "feature interaction." This work first explains the historical and modern importance of feature interactions and then surveys the modern interpretability methods which do explicitly consider feature interactions. This survey aims to bring to light the importance of feature interactions in the larger context of machine learning interpretability, especially in a modern context where deep learning models heavily rely on feature interactions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.