Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agent Deep Reinforcement Learning for Request Dispatching in Distributed-Controller Software-Defined Networking (2103.03022v1)

Published 6 Feb 2021 in cs.NI, cs.LG, and cs.MA

Abstract: Recently, distributed controller architectures have been quickly gaining popularity in Software-Defined Networking (SDN). However, the use of distributed controllers introduces a new and important Request Dispatching (RD) problem with the goal for every SDN switch to properly dispatch their requests among all controllers so as to optimize network performance. This goal can be fulfilled by designing an RD policy to guide distribution of requests at each switch. In this paper, we propose a Multi-Agent Deep Reinforcement Learning (MA-DRL) approach to automatically design RD policies with high adaptability and performance. This is achieved through a new problem formulation in the form of a Multi-Agent Markov Decision Process (MA-MDP), a new adaptive RD policy design and a new MA-DRL algorithm called MA-PPO. Extensive simulation studies show that our MA-DRL technique can effectively train RD policies to significantly outperform man-made policies, model-based policies, as well as RD policies learned via single-agent DRL algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.