Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis (2103.02903v2)

Published 4 Mar 2021 in math.NA and cs.NA

Abstract: Lattice-Boltzmann methods are known for their simplicity, efficiency and ease of parallelization, usually relying on uniform Cartesian meshes with a strong bond between spatial and temporal discretization. This fact complicates the crucial issue of reducing the computational cost and the memory impact by automatically coarsening the grid where a fine mesh is unnecessary, still ensuring the overall quality of the numerical solution through error control. This work provides a possible answer to this interesting question, by connecting, for the first time, the field of lattice-Boltzmann Methods (LBM) to the adaptive multiresolution (MR) approach based on wavelets. To this end, we employ a MR multi-scale transform to adapt the mesh as the solution evolves in time according to its local regularity. The collision phase is not affected due to its inherent local nature and because we do not modify the speed of the sound, contrarily to most of the LBM/Adaptive Mesh Refinement (AMR) strategies proposed in the literature, thus preserving the original structure of any LBM scheme. Besides, an original use of the MR allows the scheme to resolve the proper physics by efficiently controlling the accuracy of the transport phase. We carefully test our method to conclude on its adaptability to a wide family of existing lattice Boltzmann schemes, treating both hyperbolic and parabolic systems of equations, thus being less problem-dependent than the AMR approaches, which have a hard time guaranteeing an effective control on the error. The ability of the method to yield a very efficient compression rate and thus a computational cost reduction for solutions involving localized structures with loss of regularity is also shown, while guaranteeing a precise control on the approximation error introduced by the spatial adaptation of the grid. The numerical strategy is implemented on a specific open-source platform called SAMURAI with a dedicated data-structure relying on set algebra.

Citations (12)

Summary

We haven't generated a summary for this paper yet.